
A Parallel Architecture for the Generalized Travelling Salesman Problem: Project Proposal

Page | 1

A Parallel Architecture for the Generalized

Travelling Salesman Problem: Project Proposal

Max Scharrenbroich, maxfs at umd.edu

Dr. Bruce Golden, R. H. Smith School of Business, bgolden at rhsmith.umd.edu

Abstract:

The goal of this project is to develop a parallel implementation of a serial heuristic to attack large

instances of the generalized travelling salesman problem (GTSP). By leveraging more computational

resources the parallel version of the heuristic is expected to produce higher-quality solutions in less

time. A significant portion of this project will involve the development of a parallel architecture that can

be extended to host a selected serial heuristic and the GTSP problem class. The extension of the

architecture to host the serial heuristic will involve the identification and implementation of different

methods of parallel cooperation and levels of parallelism. The parallel heuristic will be tested on a

database of problem instances and the performance will be compared to published results of the serial

heuristic. In addition, the parallel heuristic will be tested to determine how performance scales with the

number of processors used.

1 - Project Background and Introduction

Problem

The generalized traveling salesman problem (GTSP) is a variant of the well-known traveling salesman

problem (TSP). Like the TSP, it is a combinatorial optimization problem and has important applications

in the field of routing. In the GTSP, a set of nodes or vertices in the plane is grouped into a number of

clusters. The goal is to find the shortest tour that visits all the clusters.

More formally, let �(�, �) be a graph where � is the set of vertices and � is the set of arcs. A distance

matrix � = (
�) is defined on �. If � is symmetric, the arcs are undirected and can be replaced with

edges. In the GTSP, � is partitioned into a set of clusters, � = {�
, ��, … , ��}, each containing a subset

of the nodes from �. The goal is to determine the shortest Hamiltonian tour visiting each cluster exactly

once. If the distance matrix is not symmetric, it may be cheaper to visit more than one node in a cluster.

For this project we propose the symmetric version of the GTSP, where � is partitioned into a set of

node-disjoint clusters and the distance matrix is symmetric, hence, exactly one node in each cluster is

visited. The following figure is an illustration of the problem (Figure 1).

A Parallel Architecture for the Generalized Travelling Salesman Problem: Project Proposal

Figure 1 Illustration of the GTSP for a problem with 6 clusters.

Context

Below are real-world examples of GTSP applications:

• Post-box collection and stochastic vehicle routing

• Routing of welfare clients through government agencies (J.P. Saksena, 1970)

• Warehouse order picking with multiple stock locations (C.E. Noon, 1988)

• Airport selection and routing for courier planes (C.E. Noon, 1988)

Mathematical Formulation

The symmetric GTSP can be formulated as the 0

where the set {�
, ��, … , ��} is a partition of

the Euclidean distance associated with edge

Subject to:

�
� �

�
� �

� ��
� � �(�)

� 2�� , for

A Parallel Architecture for the Generalized Travelling Salesman Problem: Project Proposal

Illustration of the GTSP for a problem with 6 clusters.

world examples of GTSP applications:

box collection and stochastic vehicle routing (G. Laporte, 1996) [5].

Routing of welfare clients through government agencies (J.P. Saksena, 1970) [8

Warehouse order picking with multiple stock locations (C.E. Noon, 1988) [6].

Airport selection and routing for courier planes (C.E. Noon, 1988) [6].

Mathematical Formulation

The symmetric GTSP can be formulated as the 0-1 Integer Linear Program (ILP): Given a

is a partition of � into ! clusters, and a distance matrix �
stance associated with edge " � # find:

min � 	� ��
� � '

� ��
 ()

= 1, + = 1,2,…!, (1)

� ��
� �(�)

= 2�� , for , - �, (2)

 . / 0 �1, , - �1 2 /, �1 3 {, - � |�� = 15}

�� � {0,1}, for " - #, (4)

A Parallel Architecture for the Generalized Travelling Salesman Problem: Project Proposal

Page | 2

8] .

1 Integer Linear Program (ILP): Given a graph �(�, #),
�, where 	� � � is

5}, (3)

A Parallel Architecture for the Generalized Travelling Salesman Problem: Project Proposal

Page | 3

�� � {0,1}, for , - �, (5)

�� 3 :1 if edge " is used,0 otherwise, " � #5

�� 3 :1 if vertex , is used,0 otherwise, , � � 5

E(/) 3 {" = (F, G) - # | F = /, G ∉ /}5
Constraint (1) imposes the requirement that each cluster be visited exactly once. The degree equations

(2) stipulate that if a vertex , is part of the solution its degree must be equal to two. The subtour

elimination constraints (3) ensure the solution does not contain any sub-tours. Constraints (4-5) are the

0-1 integer constraints on the selection of vertices and edges in the solution. E(/) is a function defining

the edge cut set that partitions the vertex sets / and /I.
Existing Solutions/Algorithms

Like the TSP, the GTSP is NP-hard, and it is conjectured that problems in this class are inherently

intractable. Thus, one cannot expect to find “good” or polynomial-time algorithms for solving them.

Despite this, there exist exact algorithms for solving the GTSP to optimality. One exact algorithm for

solving the GTSP is a branch-and-cut (B&C) algorithm proposed by M. Fischetti in 1997 [4]. Branch-and-

cut is a method of combinatorial optimization for solving integer linear programs. The method is a

hybrid of branch-and-bound and cutting plane methods.

While B&C techniques drastically reduce the size of the solution space and perform well on small

problem instances, these techniques are not polynomial time algorithms. As the size of the problem

instance grows, the exponential nature of the problem becomes apparent and B&C algorithms do not

terminate in a reasonable amount of time. For example, the run times for the Fischetti B&C algorithm

start approaching one day for GTSP problem instances with close to 90 clusters [4].

Heuristic algorithms have been developed to solve larger GTSP problem instances. Heuristic algorithms

are search techniques that find approximate solutions to hard combinatorial optimization problems.

The following are three heuristic algorithms that have been successfully applied to the GTSP:

• A Random-Key Genetic Algorithm (L. Snyder and M. Daskin, 2006) [3].

• Generalized Nearest Neighbor Heuristic (C.E. Noon, 1998) [6].

• mrOX Genetic Algorithm (J. Silberholz and B. L. Golden, 2007) [9].

A Parallel Architecture for the Generalized Travelling Salesman Problem: Project Proposal

Page | 4

2 - Approach
We propose a parallel approach to assailing the GTSP. Specifically, we will create a parallel architecture

and extend the architecture’s framework to implement a known and tested serial heuristic algorithm for

attacking the GTSP. A new genetic algorithm proposed by J. Silberholz and B.L. Golden in [9], referred to

as the mrOX Genetic Algorithm (mrOX GA) [1], has shown promising results and is the chosen heuristic

for this project.

In this section an overview of genetic algorithms is given so the reader has some background before

giving a description of the mrOX GA. Motivation for parallelizing serial heuristics for combinatorial

optimization is outlined, followed by an overview of several methods of parallel cooperation. An

overview of parallel meta-heuristic classifications is given. Finally, the approach for attacking the GTSP

and the objectives of the parallel architecture are described.

Overview of Genetic Algorithms

A genetic algorithm is a stochastic search technique commonly used to find approximate solutions to

combinatorial optimization problems. Genetic algorithms are a class of evolutionary algorithms that are

inspired by the process of natural selection and the theory of evolutionary biology. These algorithms

mimic the process of evolution and natural selection by simulating a population of individuals (also

known as chromosomes). An iteration of a genetic algorithm is analogous to evolving the next

generation of a population. During the iteration a small subset of the fittest individuals (i.e. least cost)

are mated to produce offspring with new traits. Since the resulting population is larger than the

original, to maintain constant population size a simulated process of natural selection removes

individuals that are found to be unfit. This process is iterated through a number of generations until

stopping criteria are met.

Initialization:

Initialization is the first step in any genetic algorithm and involves randomly generating many individual

solutions to form an initial population. The initial population covers a range of possible solutions (the

search space). The population size is typically kept constant from generation to generation and depends

on the nature of the problem.

Selection:

A genetic algorithm simulates the evolution of a population from generation to generation and mating

of individuals is an important step in this process. Pairs of individuals known as parent chromosomes

are selected for breeding from the population based on fitness and offspring are produced by applying a

crossover operator to the pair of chromosomes.

Recombination:

Recombination (crossover) involves the random selection of traits from each parent chromosome for

insertion into the child chromosome. A crossover is required to produce viable offspring (feasible

solutions for the problem instance). Depending on the structure of the chromosome and the nature of

the problem the crossover by itself is not guaranteed to produce feasible offspring. Thus following the

A Parallel Architecture for the Generalized Travelling Salesman Problem: Project Proposal

Page | 5

actual crossover, heuristics must be applied to infeasible solutions to ensure that mating always

produces feasible offspring.

Local Search:

After recombination there is usually room for additional improvement. It is typical that meta-heuristics

perform local search improvement techniques to further improve the offspring. By using local search

methods the solutions are guided into the local optimum of the local search neighborhood.

Mutation:

After crossover a small percentage of offspring are selected to be mutated. Mutation involves randomly

perturbing parts of an individual’s chromosome. As in the case of crossover, mutation must also

maintain a solution’s feasibility. Mutation ensures diversity in the population and prevents the

algorithm from prematurely converging on a poor solution.

Termination:

Due to the combinatorial nature of the problems genetic algorithms are used to solve, there is no

convergence analysis that can aid in determining when to terminate the algorithm. There are, however,

many types of stopping criteria can be used for terminating genetic algorithms. A typical stopping

criterion is to stop after a fixed number of generations (or after an elapsed time). One method stops the

algorithm after the best solution found so far does not change within a fixed number of generations.

Another method is to stop after some minimum cost is exceeded.

Overview of the mrOX Genetic Algorithm

The modified rotational ordered crossover genetic algorithm (mrOX GA), proposed by J. Silberholtz and

B. L. Golden in [9], is a serial genetic algorithm that is specially tailored to the GTSP problem. At its heart

is the mrOX crossover operator, which performs a crossover between two parents. In the rest of this

section an overview of the mrOX GA is given. For a more detailed treatment of the algorithm and

computational results the reader is referred to [9].

It is best to describe the mrOX crossover operator before describing the rest of the mrOX genetic

algorithm. First, a description of the ordered crossover (OX) portion of the mrOX is given and then the

rotational (r + OX) and modified (m + rOX) portions are discussed so the reader may gain a better

understanding of the crossover operator.

Chromosome Representation:

A natural way to represent solutions to the GTSP is with an ordered sequence of nodes (path

representation). For example, the sequence {1, 4 , 2} represents the cycle visiting node 1, then node 4,

then node 2 and finally back to node 1 to complete the cycle. The path representation lends itself nicely

to the idea of a chromosome. Path representations for solutions to the GTSP are also referred to as

chromosomes.

OX:

The ordered crossover (OX) operator is based on the TSP ordered crossover proposed by Davis in [3].

The TSP’s OX operator randomly selects two cut points on one of two parent chromosomes. The order

A Parallel Architecture for the Generalized Travelling Salesman Problem: Project Proposal

of the nodes between the two cut po

duplicate nodes from the second parent are placed, in order, starting

with wrap-around if necessary. For the GTSP this method

the second parent do not coincide with

cluster is visited only once). Figure

a hypothetical GTSP.

Figure 2 Illustration of OX crossover operator with two parent chromosomes. Each

superscripts indicating the number of the node being visited

represent the ordered list of clusters being added to the new chromosome from the

In Figure 2 the OX procedure starts

sequences of numbers represent a chromosome

numbers represent an ordered pair,

superscript indicates the node that

parent chromosomes (A). In the figure

and the segmented parent chromosomes are represented by P1’ and P2’.

 The child chromosome is initialized with the sub

the second parent, moving left to right,

while avoiding duplicate clusters (C)

cluster-node pairs from the second parent

pairs from the second parent represents a sub

rOX:

Next, the OX is modified with a rotational

component acts on the sub-path (from the second parent) to be

sub-path is used to create two sets of

operator to the original sub-path. The other set of

A Parallel Architecture for the Generalized Travelling Salesman Problem: Project Proposal

of the nodes between the two cut points on the first parent is maintained. The remaining non

duplicate nodes from the second parent are placed, in order, starting to the right of the second cut point

around if necessary. For the GTSP this method is modified so that clusters bei

the second parent do not coincide with clusters from the first parent (i.e. we want to ensure that each

Figure 2 shows an illustration of the OX operator as applied to a solution

Illustration of OX crossover operator with two parent chromosomes. Each base number represents a cluster with

the number of the node being visited that is part of the cluster. The numbers in the curly brac

clusters being added to the new chromosome from the second

 with two parent chromosomes, P1 and P2. The square brackets

a chromosome, or solution for a hypothetical GTSP problem. The

d pair, J	
 , K�L, where the base number represents a cluster

 is being visited. Initially, cut points are randomly generated on the

In the figure, cut points on the chromosomes are represented

and the segmented parent chromosomes are represented by P1’ and P2’.

The child chromosome is initialized with the sub-path from the first parent (B). Cluster

, moving left to right, are then added to the empty slots of the child chromosome

(C). The curly brackets are a visual aid and show the order in which

second parent are added to the child chromosome. The list of cluster

represents a sub-path to be connected to the first parent’s sub

rotational component yielding the rOX (r + OX). The rotational

(from the second parent) to be added to the child chromosome

two sets of sub-paths. One set of sub-paths is generated by applying a shift

. The other set of sub-paths is the mirror image of the first set. As an

A Parallel Architecture for the Generalized Travelling Salesman Problem: Project Proposal

Page | 6

. The remaining non-

the second cut point

being added from

from the first parent (i.e. we want to ensure that each

as applied to a solution for

number represents a cluster with

The numbers in the curly brackets

second parent.

with two parent chromosomes, P1 and P2. The square brackets with

GTSP problem. The

cluster and the

Initially, cut points are randomly generated on the

represented by vertical bars

luster-node pairs from

dded to the empty slots of the child chromosome

. The curly brackets are a visual aid and show the order in which

The list of cluster-node

first parent’s sub-path.

rotational

chromosome. This

is generated by applying a shift

is the mirror image of the first set. As an

A Parallel Architecture for the Generalized Travelling Salesman Problem: Project Proposal

Page | 7

example, assume that after the OX the following sub-path is generated: {1, 2, 3}. Applying a shift

operator to this sub-path yields the set of sub-paths:

{1, 2, 3} → { {1, 2, 3} {2, 3, 1} {3, 1, 2} }

The second set of sub-paths is the mirror image of the first:

{ {1, 2, 3} {2, 3, 1} {3, 1, 2} } → { {3, 2, 1} {1, 3, 2} {2, 1, 3} }

mrOX:

The rotational component is further modified resulting in the mrOX (m + rOX). For each sub-path

generated in the rOX, every combination of nodes in the clusters at the end points of the sub-path is

generated, resulting in an augmented set of sub-paths to be tested. As an example, suppose one of the

sub-paths from the rOX procedure is: { 1
{A,B}

 , 3, 2
{C,D}

 }. Creating the combinations of different nodes at

the end points yields the following set of possible sub-paths:

{1, 3, 2} → { { 1
A
 , 3, 2

C
 } { 1

A
 , 3, 2

D
 } { 1

B
 , 3, 2

C
 } { 1

B
 , 3, 2

D
 } }

Outline of the mrOX GA:

Having described the mrOX operator, an outline the mrOX GA can now be given.

• Initialization: The mrOX GA starts by initializing seven isolated randomly generated populations

(islands) containing 50 individuals each. During the evolution of the isolated populations a light-

weight version of the mrOX crossover operator (rOX) followed by local improvement heuristics are

applied to quickly generate reasonable solutions. The local improvement involves one full cycle of

two-opt followed by one-swap and is applied only to the new best solution in each population.

• Population Merge: After none of the populations produced a new best solution for 10 generations,

the seven isolated populations are merged by selecting the 50 best solutions out of the combined

population of 350 solutions.

• Continued Evolution: Post-merge, each generation is evolved using the full mrOX crossover

operator followed by local improvement heuristics. The local improvement involves carrying out

multiple cycles of two-opt followed by one-swap until no improvements are found. Local

improvements are only carried out on child solutions that have better fitness than both parents.

Local improvements are also made to a randomly selected 5% of new chromosomes to preserve

diversity.

• Reproduction and Death: In each generation a subset 30 individuals are randomly selected using a

spinner procedure (based on individual fitness) for reproduction. Each pair of parent chromosomes

produces two offspring, yielding a total of 30 child chromosomes. After reproduction, in order to

maintain the population size of 50 individuals, 30 individuals are randomly selected for death using a

similar procedure to that used for parent selection.

• Mutation: Before and after the merge each chromosome has a 5% probability of being selected for

mutation to preserve diversity. The mutation consists of randomly selecting two cut points in the

interior of an individual’s chromosome and reversing the order of the nodes in between these two

points.

A Parallel Architecture for the Generalized Travelling Salesman Problem: Project Proposal

Page | 8

• Termination: The algorithm is terminated after the merged population does not produce a better

solution for 150 generations.

Motivation for Parallelization

Below are several motivations for parallelizing serial heuristics for combinatorial optimization:

Speedup:

Traditionally, the goal when designing parallel algorithms is to reduce the time required to solve the

problem. For exact solution methods a useful performance measurement is the speedup, computed as

the ratio of the wall-clock time required to solve the problem in parallel with p processors and the

corresponding solution time taken by the sequential algorithm.

Speedup performance measures are harder to define for heuristic methods that are not guaranteed to

reach the optimal solution. Thus, the goal of an effective parallel heuristic is to outperform its

sequential counterpart in terms of solution quality and computational efficiency [2].

Increased Problem Size:

Another motivation for parallelization is that by leveraging more computational resources the parallel

heuristic can handle larger problem instances.

Robustness with Parameter Exploration:

Many of the meta-heuristics applied to combinatorial optimization problems have multiple parameters

that influence the success of the algorithm on a specific problem or class of problem instances. This can

make tuning the parameters to specific problems time consuming, especially when run times are long.

By running different parameterizations on different processes the parameter space can be explored,

avoiding the need for manual tuning. In addition, this approach avoids the need for re-tuning when the

algorithm is applied to a different problem instance. It is expected that the parallel version of the

algorithm using parameter exploration will exhibit robustness and perform consistently on a range of

problem instances.

Cooperation:

Parallelization allows cooperation among processes. It is believed that cooperation can improve the

solution quality by guiding the search to more promising regions of the search space.

Methods of Cooperation

As mentioned above, hosting a serial heuristic in the proposed parallel architecture allows cooperation

to further improve the convergence and quality of a solution. Although there are many ways for

cooperation to be implemented, we will investigate the following three methods of cooperation:

No Cooperation:

The case where processes do not use cooperation is a useful benchmark for testing whether or not

other methods of cooperation are yielding improvements. In this case there is no exchange of

information between the processes. When the stopping criterion is reached the best solution is picked

A Parallel Architecture for the Generalized Travelling Salesman Problem: Project Proposal

from among the all the processes.

serial implementation.

Figure

Solution Warehouse:

The solution warehouse method is a basic architecture for

in parallel. In this method a worker

information between the other worker processes. The solution warehouse

periodically from the worker processes and manages them in a list according to cost (i.e. it keeps tra

of the best solutions found so far). Due to performance limitations the list is kept to a manageable size.

In accordance with a predefined schedule or scheme the

solutions back to the worker processes for furth

scheme for the solution warehouse method:

1. Each process sends the best solution to the warehouse after a number of k iterations (or period

of time).

2. The warehouse collects the solutions and adds them to a

top t solutions in memory.

3. The warehouse then assigns the best solution

processes and then randomly assigns solutions from the list to each remaining processes (wit

no repeats) for continued processing.

The scheme described above maintains diversity by

processing solutions that are not necessarily the best found so far.

premature convergence to poor local optima.

A Parallel Architecture for the Generalized Travelling Salesman Problem: Project Proposal

 Conceptually, this is equivalent to running multiple instances of

gure 3 Illustration of no-cooperation scheme.

method is a basic architecture for cooperation among worker processes running

worker process (solution warehouse) is selected to be the medi

other worker processes. The solution warehouse collects problem solutions

periodically from the worker processes and manages them in a list according to cost (i.e. it keeps tra

of the best solutions found so far). Due to performance limitations the list is kept to a manageable size.

In accordance with a predefined schedule or scheme the solution warehouse sends a subset of the

solutions back to the worker processes for further processing. The following is one implementation

scheme for the solution warehouse method:

Each process sends the best solution to the warehouse after a number of k iterations (or period

The warehouse collects the solutions and adds them to a list sorted by the cost, maintaining the

The warehouse then assigns the best solution (or subset of solutions) to a subset of the

processes and then randomly assigns solutions from the list to each remaining processes (wit

no repeats) for continued processing.

maintains diversity by allowing some of the workers to continue

solutions that are not necessarily the best found so far. Maintaining diversity prevents

o poor local optima.

A Parallel Architecture for the Generalized Travelling Salesman Problem: Project Proposal

Page | 9

running multiple instances of the

worker processes running

is selected to be the mediator of

collects problem solutions

periodically from the worker processes and manages them in a list according to cost (i.e. it keeps track

of the best solutions found so far). Due to performance limitations the list is kept to a manageable size.

a subset of the

er processing. The following is one implementation

Each process sends the best solution to the warehouse after a number of k iterations (or period

list sorted by the cost, maintaining the

to a subset of the worker

processes and then randomly assigns solutions from the list to each remaining processes (with

continue

aintaining diversity prevents

A Parallel Architecture for the Generalized Travelling Salesman Problem: Project Proposal

Figure 4 Illustration of solution warehouse method of cooperation. Periodically each process sends a subset of the best

solutions it has found so far to the warehouse. The warehouse responds by synchronizi

working on a subset of the best solut

Inter-Worker Cooperation:

Inter-worker cooperation is a general method of cooperation where workers exchange information

depending on a pre-defined communication topology. Workers are only allowed to communicate with

their neighbors. An example of a possible communication

each worker sends information to one neighbor.

communication.

Figure 5 Illustration of inter

Classification of Parallel Meta

An important step in creating a parallel implementation of a heuristic is in determining what aspects of

the heuristic under consideration are amenable to parallelization. In

proposed three types of classification

• Type 1: Low-Level Parallelism:

method. For example, if there is a task within a heuristic that has a high computational burden and

can be parallelized then low-level parallelism can be implemented to speed up that portion of the

heuristic.

• Type 2: Partitioning of the Solution Space:

parallel. At the end of processing the results are combined in

solution.

A Parallel Architecture for the Generalized Travelling Salesman Problem: Project Proposal

Illustration of solution warehouse method of cooperation. Periodically each process sends a subset of the best

solutions it has found so far to the warehouse. The warehouse responds by synchronizing the worker processes to continue

working on a subset of the best solutions found by all the processes.

worker cooperation is a general method of cooperation where workers exchange information

mmunication topology. Workers are only allowed to communicate with

possible communication topology is a ring topology. In a ring topology

each worker sends information to one neighbor. Figure 5 illustrates the ring topology method of

Illustration of inter-worker cooperation in a ring topology.

Meta-Heuristics

An important step in creating a parallel implementation of a heuristic is in determining what aspects of

the heuristic under consideration are amenable to parallelization. In 1998 Crainic and Toulouse

three types of classifications for parallel meta-heuristics [1].

 Attempts to speed up processing within an iteration of a heuristic

method. For example, if there is a task within a heuristic that has a high computational burden and

level parallelism can be implemented to speed up that portion of the

Type 2: Partitioning of the Solution Space: Partitions the solution space into subsets to explore in

parallel. At the end of processing the results are combined in some way to produce the final

A Parallel Architecture for the Generalized Travelling Salesman Problem: Project Proposal

Page | 10

Illustration of solution warehouse method of cooperation. Periodically each process sends a subset of the best

ng the worker processes to continue

worker cooperation is a general method of cooperation where workers exchange information

mmunication topology. Workers are only allowed to communicate with

topology is a ring topology. In a ring topology

illustrates the ring topology method of

An important step in creating a parallel implementation of a heuristic is in determining what aspects of

Crainic and Toulouse

Attempts to speed up processing within an iteration of a heuristic

method. For example, if there is a task within a heuristic that has a high computational burden and

level parallelism can be implemented to speed up that portion of the

Partitions the solution space into subsets to explore in

some way to produce the final

A Parallel Architecture for the Generalized Travelling Salesman Problem: Project Proposal

Page | 11

• Type 3: Concurrent Exploration: Multiple concurrent explorations of the solution space. Genetic

algorithms are particularly amenable to this type of parallelism since these heuristics operate on

populations of solutions.

Method of Approach

The following list outlines the method of approach we will take for creating a parallel heuristic for the

GTSP:

1. Develop a general parallel architecture for hosting sequential heuristic algorithms.

2. Extend the framework provided by the architecture to host the mrOX GA heuristic and the GTSP

problem class.

3. Since genetic algorithms are well suited for the type 3 parallelization (concurrent exploration)

the parallel implementation will consist of concurrent processes running the mrOX GA.

4. Type 1 or low-level parallelism will be considered in addition to the type 3 parallelism

mentioned above.

5. Implement several different methods of parallel cooperation.

Parallel Architecture Objectives

The following is a list of objectives of the proposed parallel architecture:

• Provide a layer of abstraction from Message Passing Interface (MPI) so application developers

do not need to be aware of the MPI implementation details.

• Provide a framework of interfaces, classes and event handlers for extensibility.

• Provide parallel cooperation using the selected cooperation scheme.

• Utilize multi-threading for handling I/O and framework related tasks on idle CPUs to prevent

processing interruptions.

• Provide a capability for reporting process resource usage, status, debug and timing information.

3 – Implementation

Initial Development and Testing: Multi-processor PC running Linux O/S.

Final Testing: UMD's Deepthought Cluster, Linux O/S, with up to 64 nodes where each node has at least

2 processors.

Language and Libraries: C/C++, POSIX Threads and MPI Libraries.

A Parallel Architecture for the Generalized Travelling Salesman Problem: Project Proposal

Page | 12

4 - Databases
The database for testing the parallel algorithm will be based on a subset of TSP instances from the well-

known TSPLib
1
, a library of TSP instances that can be found online. We shall use an existing code that

implements the method described in Section 6 of [4] to cluster nodes of a TSP instance. This method

clusters nodes based on proximity to each other, iteratively selecting ! = MK/5O centers of clusters

such that each center maximizes its distance from the closest already-selected center. Then, all K nodes

are added to the cluster whose center is closest.

Fischetti et al.'s branch-and-cut algorithm provides exact values for TSPLib datasets where the number

of nodes ranged between 48 and 400 nodes and the number of clusters is between 10 and 80

respectively [4]. The serial heuristic run times for these problem instances are fairly short (all less than

10 seconds) and we don’t expect the parallel implementation to perform better than the serial one due

to lack of search depth and parallelization overhead. In [9] the mrOX GA was tested against another

genetic algorithm, Snyder and Daskin's Random-Key Genetic Algorithm [10], on problem instances

where the number of nodes is between 400 and 1084 and the number of clusters is between 80 and 200

respectively. In this set of instances the run time for the serial algorithm ranged from 10 to 131

seconds. It is for this set of instances that we will test performance and where we expect to see

improvement using the parallel implementation.

5 – Validation and Testing

Validation and testing will consist of several phases.

Validation

Validation is important step in verifying that the behavior of the software code matches what it is

intended to do. The following procedure will be used to validate the code.

1. Validate the parallel architecture using a simple test algorithm and generate several test-cases

to test the functionality of the parallel architecture.

2. Test the parallel implementation using one processor over a number of runs for a subset of

problem instances and compare those results to published ones. It is expected that run times

and results should match closely to the published ones.

3. Test the parallel implementation with more than one processor over a number of runs for the

same subset of problem instances used in part 2.

Testing

After validation we will test the performance of the parallel implementation to the serial one. As

mentioned earlier, comparing a parallel heuristic to its serial counterpart is not so straight forward. We

propose the following set of tests to measure performance improvements due to parallelization. For

the parallel implementation and the selected cooperation scheme run the following tests:

1
 http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

A Parallel Architecture for the Generalized Travelling Salesman Problem: Project Proposal

Page | 13

1. Use the published results of solution costs for runs of the serial algorithm in [9] as a stopping

criterion for the parallel implementation.

2. Run the parallel implementation with different numbers of processors and measure the

processing times using the above stopping criteria.

3. Compare the processing times to the ideal processing time as a function of the number of

processors. The ideal processing time is computed as the ratio of the serial processing time and

the number of processors.

4. For testing the efficacy of cooperation run the above tests using a parallel implementation and

the non-cooperative scheme. Compare the results to the cooperative scheme. Conceptually,

this is equivalent to the serial implementation.

6 - Project Schedule/Milestones

October 16-30: Start design of the parallel architecture.

November: Finish design and start coding and testing of the parallel architecture.

December and January: Continue coding parallel architecture and extend the framework for the mrOX

GA algorithm and the GTSP problem class.

February: Begin test and validation on Deepthought cluster.

March: Perform final testing on full data sets and collect results.

April-May: Generate parallel architecture API documentation, write final report.

7 – Deliverables

• Parallel architecture code, scripts and API documentation.

• Tables of results.

• Final report.

8 – References

1. Crainic, T.G. and Toulouse, M. Parallel Strategies for Meta-Heuristics. Fleet Management and

Logistics, 205-251, 1998.

2. Crainic, T.G. Parallel Solution Methods for Vehicle Routing Problems. Operatioins Research 43,

171-198, 2008.

A Parallel Architecture for the Generalized Travelling Salesman Problem: Project Proposal

Page | 14

3. L. Davis. Applying Adaptive Algorithms to Epistatic Domains. Proceeding of the International

Joint Conference on Artificial Intelligence, 162-164, 1985.

4. M. Fischetti, J.J. Salazar-Gonzalez, P. Toth. A branch-and-cut algorithm for the symmetric

generalized traveling salesman problem. Operations Research 45 (3): 378–394, 1997.

5. G. Laporte, A. Asef-Vaziri, C. Sriskandarajah. Some Applications of the Generalized Traveling

Salesman Problem. Journal of the Operational Research Society 47: 1461-1467, 1996.

6. C.E. Noon. The generalized traveling salesman problem. Ph. D. Dissertation, University of

Michigan, 1988.

7. C.E. Noon. A Lagrangian based approach for the asymmetric generalized traveling salesman

problem. Operations Research 39 (4): 623-632, 1990.

8. J.P. Saksena. Mathematical model of scheduling clients through welfare agencies. CORS Journal

8: 185-200, 1970.

9. J. Silberholz and B.L. Golden. The Generalized Traveling Salesman Problem: A New Genetic

Algorithm Approach. Operations Research/Computer Science Interfaces Series 37: 165-181,

2007.

10. L. Snyder and M. Daskin. A random-key genetic algorithm for the generalized traveling salesman

problem. European Journal of Operational Research 17 (1): 38-53, 2006.

